AQA Maths Further Pure 2

Past Paper Pack

2006-2013

General Certificate of Education January 2006 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Further Pure 2

MFP2

Friday 27 January 2006 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P80782/Jan06/MFP2 6/6/6/ MFP2

Answer all questions.

1 (a) Show that

$$\frac{1}{r^2} - \frac{1}{(r+1)^2} = \frac{2r+1}{r^2(r+1)^2}$$
 (2 marks)

(b) Hence find the sum of the first *n* terms of the series

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots$$
 (4 marks)

2 The cubic equation

$$x^3 + px^2 + qx + r = 0$$

where p, q and r are real, has roots α , β and γ .

(a) Given that

$$\alpha + \beta + \gamma = 4$$
 and $\alpha^2 + \beta^2 + \gamma^2 = 20$

find the values of p and q.

(5 marks)

(b) Given further that one root is 3 + i, find the value of r.

(5 marks)

3 The complex numbers z_1 and z_2 are given by

$$z_1 = \frac{1+i}{1-i}$$
 and $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$

(a) Show that $z_1 = i$.

(2 marks)

(b) Show that $|z_1| = |z_2|$.

(2 marks)

(c) Express both z_1 and z_2 in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \leqslant \pi$. (3 marks)

(d) Draw an Argand diagram to show the points representing z_1 , z_2 and $z_1 + z_2$. (2 marks)

(e) Use your Argand diagram to show that

$$\tan\frac{5}{12}\pi = 2 + \sqrt{3} \tag{3 marks}$$

4 (a) Prove by induction that

$$2 + (3 \times 2) + (4 \times 2^{2}) + \ldots + (n+1) 2^{n-1} = n 2^{n}$$

for all integers $n \ge 1$.

(6 marks)

(b) Show that

$$\sum_{r=n+1}^{2n} (r+1) 2^{r-1} = n 2^n (2^{n+1} - 1)$$
 (3 marks)

5 The complex number z satisfies the relation

$$|z + 4 - 4i| = 4$$

- (a) Sketch, on an Argand diagram, the locus of z. (3 marks)
- (b) Show that the greatest value of |z| is $4(\sqrt{2}+1)$. (3 marks)
- (c) Find the value of z for which

$$\arg(z+4-4\mathrm{i}) = \frac{1}{6}\pi$$

Give your answer in the form a + ib.

(3 marks)

Turn over for the next question

6 It is given that $z = e^{i\theta}$.

(a) (i) Show that

$$z + \frac{1}{z} = 2\cos\theta \tag{2 marks}$$

(ii) Find a similar expression for

$$z^2 + \frac{1}{z^2}$$
 (2 marks)

(iii) Hence show that

$$z^{2} - z + 2 - \frac{1}{z} + \frac{1}{z^{2}} = 4\cos^{2}\theta - 2\cos\theta$$
 (3 marks)

(b) Hence solve the quartic equation

$$z^4 - z^3 + 2z^2 - z + 1 = 0$$

giving the roots in the form a + ib.

(5 marks)

7 (a) Use the definitions

$$\sinh\theta = \frac{1}{2}(e^{\theta} - e^{-\theta})$$
 and $\cosh\theta = \frac{1}{2}(e^{\theta} + e^{-\theta})$

to show that:

(i)
$$2 \sinh \theta \cosh \theta = \sinh 2\theta$$
; (2 marks)

(ii)
$$\cosh^2 \theta + \sinh^2 \theta = \cosh 2\theta$$
. (3 marks)

(b) A curve is given parametrically by

$$x = \cosh^3 \theta, \quad y = \sinh^3 \theta$$

(i) Show that

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \frac{9}{4}\sinh^2 2\theta \cosh 2\theta \tag{6 marks}$$

(ii) Show that the length of the arc of the curve from the point where $\theta=0$ to the point where $\theta=1$ is

$$\frac{1}{2} \left[\left(\cosh 2 \right)^{\frac{3}{2}} - 1 \right] \tag{6 marks}$$

END OF QUESTIONS

General Certificate of Education June 2006 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Further Pure 2

MFP2

Monday 19 June 2006 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P85475/Jun06/MFP2 6/6/6/ **MFP2**

Answer all questions.

1 (a) Given that

$$\frac{r^2 + r - 1}{r(r+1)} = A + B\left(\frac{1}{r} - \frac{1}{r+1}\right)$$

find the values of A and B.

(3 marks)

(b) Hence find the value of

$$\sum_{r=1}^{99} \frac{r^2 + r - 1}{r(r+1)}$$
 (4 marks)

2 A curve has parametric equations

$$x = t - \frac{1}{3}t^3$$
, $y = t^2$

(a) Show that

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = (1+t^2)^2 \tag{3 marks}$$

(b) The arc of the curve between t = 1 and t = 2 is rotated through 2π radians about the x-axis.

Show that S, the surface area generated, is given by $S = k\pi$, where k is a rational number to be found. (5 marks)

3 The curve *C* has equation

$$y = \cosh x - 3 \sinh x$$

(a) (i) The line y = -1 meets C at the point (k, -1).

Show that

$$e^{2k} - e^k - 2 = 0$$
 (3 marks)

- (ii) Hence find k, giving your answer in the form $\ln a$. (4 marks)
- (b) (i) Find the x-coordinate of the point where the curve C intersects the x-axis, giving your answer in the form $p \ln a$. (4 marks)
 - (ii) Show that C has no stationary points. (3 marks)
 - (iii) Show that there is exactly one point on C for which $\frac{d^2y}{dx^2} = 0$. (1 mark)
- 4 (a) On one Argand diagram, sketch the locus of points satisfying:

(i)
$$|z-3+2i|=4$$
; (3 marks)

(ii)
$$\arg(z-1) = -\frac{1}{4}\pi$$
. (3 marks)

(b) Indicate on your sketch the set of points satisfying both

$$|z-3+2\mathrm{i}|\leqslant 4$$
 and
$$\arg(z-1)=-\frac{1}{4}\pi$$
 (1 mark)

Turn over for the next question

5 The cubic equation

$$z^3 - 4iz^2 + qz - (4 - 2i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1 mark)

(ii)
$$\alpha\beta\gamma$$
. (1 mark)

(b) Given that $\alpha = \beta + \gamma$, show that:

(i)
$$\alpha = 2i$$
; (1 mark)

(ii)
$$\beta \gamma = -(1+2i);$$
 (2 marks)

(iii)
$$q = -(5+2i)$$
. (3 marks)

(c) Show that β and γ are the roots of the equation

$$z^2 - 2iz - (1+2i) = 0 (2 marks)$$

(d) Given that β is real, find β and γ . (3 marks)

6 (a) The function f is given by

$$f(n) = 15^n - 8^{n-2}$$

Express

$$f(n + 1) - 8f(n)$$

in the form $k \times 15^n$. (4 marks)

(b) Prove by induction that $15^n - 8^{n-2}$ is a multiple of 7 for all integers $n \ge 2$. (4 marks)

- 7 (a) Find the six roots of the equation $z^6=1$, giving your answers in the form $e^{i\phi}$, where $-\pi < \phi \leqslant \pi$.
 - (b) It is given that $w = e^{i\theta}$, where $\theta \neq n\pi$.

(i) Show that
$$\frac{w^2 - 1}{w} = 2i \sin \theta$$
. (2 marks)

(ii) Show that
$$\frac{w}{w^2 - 1} = -\frac{i}{2\sin\theta}$$
. (2 marks)

(iii) Show that
$$\frac{2i}{w^2 - 1} = \cot \theta - i$$
. (3 marks)

- (iv) Given that $z = \cot \theta i$, show that $z + 2i = zw^2$. (2 marks)
- (c) (i) Explain why the equation

$$(z+2i)^6 = z^6$$

has five roots. (1 mark)

(ii) Find the five roots of the equation

$$(z+2i)^6 = z^6$$

giving your answers in the form a + ib. (4 marks)

END OF QUESTIONS

General Certificate of Education January 2007 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Further Pure 2

MFP2

Thursday 1 February 2007 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P89696/Jan07/MFP2 6/6/6/ MFP2

Answer all questions.

1 (a) Given that

$$4\cosh^2 x = 7\sinh x + 1$$

find the two possible values of $\sinh x$.

(4 marks)

- (b) Hence obtain the two possible values of x, giving your answers in the form $\ln p$.

 (3 marks)
- 2 (a) Sketch on one diagram:
 - (i) the locus of points satisfying |z-4+2i|=2;

(3 marks)

(ii) the locus of points satisfying |z| = |z - 3 - 2i|.

(3 marks)

(b) Shade on your sketch the region in which

both

$$|z-4+2i| \leq 2$$

and

$$|z| \leq |z - 3 - 2i|$$

(2 marks)

3 The cubic equation

$$z^3 + 2(1 - i)z^2 + 32(1 + i) = 0$$

has roots α , β and γ .

- (a) It is given that α is of the form ki, where k is real. By substituting z = ki into the equation, show that k = 4.
- (b) Given that $\beta = -4$, find the value of γ .

(2 marks)

4 (a) Given that $y = \operatorname{sech} t$, show that:

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\mathrm{sech}\,t\,\tanh t$$
; (3 marks)

(ii)
$$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \mathrm{sech}^2 t - \mathrm{sech}^4 t$$
. (2 marks)

(b) The diagram shows a sketch of part of the curve given parametrically by

$$x = t - \tanh t$$
 $y = \operatorname{sech} t$

The curve meets the y-axis at the point K, and P(x, y) is a general point on the curve. The arc length KP is denoted by s. Show that:

(i)
$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \tanh^2 t$$
; (4 marks)

(ii)
$$s = \ln \cosh t$$
; (3 marks)

(iii)
$$y = e^{-s}$$
. (2 marks)

(c) The arc KP is rotated through 2π radians about the x-axis. Show that the surface area generated is

$$2\pi(1 - e^{-s}) \tag{4 marks}$$

Turn over for the next question

5 (a) Prove by induction that, if n is a positive integer,

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \qquad (5 \text{ marks})$$

- (b) Find the value of $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6$. (2 marks)
- (c) Show that

$$(\cos \theta + i \sin \theta)(1 + \cos \theta - i \sin \theta) = 1 + \cos \theta + i \sin \theta$$
 (3 marks)

(d) Hence show that

$$\left(1 + \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6 = 0$$
(4 marks)

- 6 (a) Find the three roots of $z^3=1$, giving the non-real roots in the form $e^{i\theta}$, where $-\pi < \theta \le \pi$.
 - (b) Given that ω is one of the non-real roots of $z^3 = 1$, show that

$$1 + \omega + \omega^2 = 0 (2 marks)$$

(c) By using the result in part (b), or otherwise, show that:

(i)
$$\frac{\omega}{\omega+1} = -\frac{1}{\omega}$$
; (2 marks)

(ii)
$$\frac{\omega^2}{\omega^2 + 1} = -\omega; \qquad (1 \text{ mark})$$

(iii)
$$\left(\frac{\omega}{\omega+1}\right)^k + \left(\frac{\omega^2}{\omega^2+1}\right)^k = (-1)^k 2\cos\frac{2}{3}k\pi$$
, where k is an integer. (5 marks)

7 (a) Use the identity $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ with A = (r + 1)x and B = rx to show that

$$\tan rx \tan(r+1)x = \frac{\tan(r+1)x}{\tan x} - \frac{\tan rx}{\tan x} - 1$$
 (4 marks)

(b) Use the method of differences to show that

$$\tan\frac{\pi}{50}\tan\frac{2\pi}{50} + \tan\frac{2\pi}{50}\tan\frac{3\pi}{50} + \dots + \tan\frac{19\pi}{50}\tan\frac{20\pi}{50} = \frac{\tan\frac{2\pi}{5}}{\tan\frac{\pi}{50}} - 20$$
 (5 marks)

END OF QUESTIONS

General Certificate of Education June 2007 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Further Pure 2

MFP2

Tuesday 26 June 2007 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P93984/Jun07/MFP2 6/6/6/ MFP2

Answer all questions.

1 (a) Given that $f(r) = (r-1)r^2$, show that

$$f(r+1) - f(r) = r(3r+1)$$
 (3 marks)

(b) Use the method of differences to find the value of

$$\sum_{r=50}^{99} r(3r+1) \tag{4 marks}$$

2 The cubic equation

$$z^3 + pz^2 + 6z + q = 0$$

has roots α , β and γ .

(a) Write down the value of
$$\alpha\beta + \beta\gamma + \gamma\alpha$$
. (1 mark)

- (b) Given that p and q are real and that $\alpha^2 + \beta^2 + \gamma^2 = -12$:
 - (i) explain why the cubic equation has two non-real roots and one real root;

(2 marks)

(ii) find the value of
$$p$$
. (4 marks)

(c) One root of the cubic equation is -1 + 3i.

Find:

(ii) the value of q. (2 marks)

3 Use De Moivre's Theorem to find the smallest positive angle θ for which

$$(\cos\theta + i\sin\theta)^{15} = -i (5 marks)$$

- 4 (a) Differentiate $x \tan^{-1} x$ with respect to x. (2 marks)
 - (b) Show that

$$\int_0^1 \tan^{-1} x \, dx = \frac{\pi}{4} - \ln \sqrt{2}$$
 (5 marks)

5 The sketch shows an Argand diagram. The points A and B represent the complex numbers z_1 and z_2 respectively. The angle $AOB = 90^{\circ}$ and OA = OB.

- (a) Explain why $z_2 = iz_1$. (2 marks)
- (b) On a **single** copy of the diagram, draw:
 - (i) the locus L_1 of points satisfying $|z z_2| = |z z_1|$; (2 marks)
 - (ii) the locus L_2 of points satisfying $arg(z z_2) = arg z_1$. (3 marks)
- (c) Find, in terms of z_1 , the complex number representing the point of intersection of L_1 and L_2 . (2 marks)
- 6 (a) Show that

$$\left(1 - \frac{1}{(k+1)^2}\right) \times \frac{k+1}{2k} = \frac{k+2}{2(k+1)}$$
 (3 marks)

(b) Prove by induction that for all integers $n \ge 2$

$$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)...\left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$
 (4 marks)

Turn over for the next question

- 7 A curve has equation $y = 4\sqrt{x}$.
 - (a) Show that the length of arc s of the curve between the points where x = 0 and x = 1 is given by

$$s = \int_0^1 \sqrt{\frac{x+4}{x}} \, \mathrm{d}x \tag{4 marks}$$

(b) (i) Use the substitution $x = 4 \sinh^2 \theta$ to show that

$$\int \sqrt{\frac{x+4}{x}} \, \mathrm{d}x = \int 8 \cosh^2 \theta \, \mathrm{d}\theta \tag{5 marks}$$

(ii) Hence show that

$$s = 4 \sinh^{-1} 0.5 + \sqrt{5} \tag{6 marks}$$

- **8** (a) (i) Given that $z^6 4z^3 + 8 = 0$, show that $z^3 = 2 \pm 2i$. (2 marks)
 - (ii) Hence solve the equation

$$z^6 - 4z^3 + 8 = 0$$

giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (6 marks)

(b) Show that, for any real values of k and θ ,

$$(z - ke^{i\theta})(z - ke^{-i\theta}) = z^2 - 2kz\cos\theta + k^2$$
 (2 marks)

(c) Express $z^6 - 4z^3 + 8$ as the product of three quadratic factors with real coefficients.

(3 marks)

END OF QUESTIONS

General Certificate of Education January 2008 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Further Pure 2

MFP2

Thursday 31 January 2008 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P97937/Jan08/MFP2 6/6/ MFP2

Answer all questions.

1 (a) Express 4 + 4i in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (3 marks)

(b) Solve the equation

$$z^5 = 4 + 4i$$

giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (5 marks)

2 (a) Show that

$$(2r+1)^3 - (2r-1)^3 = 24r^2 + 2$$
 (3 marks)

(b) Hence, using the method of differences, show that

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$
 (6 marks)

3 A circle C and a half-line L have equations

$$|z - 2\sqrt{3} - \mathbf{i}| = 4$$

and

$$\arg(z+i) = \frac{\pi}{6}$$

respectively.

(a) Show that:

(i) the circle C passes through the point where z = -i; (2 marks)

(ii) the half-line L passes through the centre of C. (3 marks)

(b) On one Argand diagram, sketch C and L. (4 marks)

(c) Shade on your sketch the set of points satisfying both

$$|z - 2\sqrt{3} - i| \le 4$$

and $0 \le \arg(z+i) \le \frac{\pi}{6}$ (2 marks)

4 The cubic equation

$$z^3 + iz^2 + 3z - (1+i) = 0$$

has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1 mark)

(ii)
$$\alpha\beta + \beta\gamma + \gamma\alpha$$
; (1 mark)

(iii)
$$\alpha\beta\gamma$$
. (1 mark)

(b) Find the value of:

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
; (3 marks)

(ii)
$$\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$$
; (4 marks)

(iii)
$$\alpha^2 \beta^2 \gamma^2$$
. (2 marks)

(c) Hence write down a cubic equation whose roots are
$$\alpha^2$$
, β^2 and γ^2 . (2 marks)

5 Prove by induction that for all integers $n \ge 1$

$$\sum_{r=1}^{n} (r^2 + 1)(r!) = n(n+1)!$$
 (7 marks)

Turn over for the next question

6 (a) (i) By applying De Moivre's theorem to $(\cos \theta + i \sin \theta)^3$, show that

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta \sin^2 \theta \qquad (3 \text{ marks})$$

- (ii) Find a similar expression for $\sin 3\theta$. (1 mark)
- (iii) Deduce that

$$\tan 3\theta = \frac{\tan^3 \theta - 3 \tan \theta}{3 \tan^2 \theta - 1} \tag{3 marks}$$

(b) (i) Hence show that $\tan \frac{\pi}{12}$ is a root of the cubic equation

$$x^3 - 3x^2 - 3x + 1 = 0 (3 marks)$$

- (ii) Find two other values of θ , where $0 < \theta < \pi$, for which $\tan \theta$ is a root of this cubic equation. (2 marks)
- (c) Hence show that

$$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} = 4 \tag{2 marks}$$

7 (a) Given that $y = \ln \tanh \frac{x}{2}$, where x > 0, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{cosech} x \tag{6 marks}$$

- (b) A curve has equation $y = \ln \tanh \frac{x}{2}$, where x > 0. The length of the arc of the curve between the points where x = 1 and x = 2 is denoted by s.
 - (i) Show that

$$s = \int_{1}^{2} \coth x \, dx \tag{2 marks}$$

(ii) Hence show that $s = \ln(2\cosh 1)$. (4 marks)

END OF QUESTIONS

General Certificate of Education June 2008 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Further Pure 2

MFP2

Thursday 15 May 2008 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P5650/Jun08/MFP2 6/6/6/ MFP2

Answer all questions.

1 (a) Express

$$5 \sinh x + \cosh x$$

in the form $Ae^x + Be^{-x}$, where A and B are integers.

(2 marks)

(b) Solve the equation

$$5\sinh x + \cosh x + 5 = 0$$

giving your answer in the form $\ln a$, where a is a rational number.

(4 marks)

2 (a) Given that

$$\frac{1}{r(r+1)(r+2)} = \frac{A}{r(r+1)} + \frac{B}{(r+1)(r+2)}$$

show that $A = \frac{1}{2}$ and find the value of B.

(3 marks)

(b) Use the method of differences to find

$$\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)}$$

giving your answer as a rational number.

(4 marks)

3 The cubic equation

$$z^3 + qz + (18 - 12i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha\beta\gamma$$
; (1 mark)

(ii)
$$\alpha + \beta + \gamma$$
. (1 mark)

(b) Given that $\beta + \gamma = 2$, find the value of:

(i)
$$\alpha$$
; (1 mark)

(ii)
$$\beta \gamma$$
; (2 marks)

(iii)
$$q$$
. (3 marks)

(c) Given that β is of the form ki, where k is real, find β and γ . (4 marks)

4 (a) A circle C in the Argand diagram has equation

$$|z+5-i|=\sqrt{2}$$

Write down its radius and the complex number representing its centre. (2 marks)

(b) A half-line L in the Argand diagram has equation

$$\arg(z+2i) = \frac{3\pi}{4}$$

Show that $z_1 = -4 + 2i$ lies on L. (2 marks)

(c) (i) Show that
$$z_1 = -4 + 2i$$
 also lies on C . (1 mark)

(ii) Hence show that
$$L$$
 touches C . (3 marks)

(d) The complex number z_2 lies on C and is such that $arg(z_2 + 2i)$ has as great a value as possible.

Indicate the position of z_2 on your sketch. (2 marks)

- 5 (a) Use the definition $\cosh x = \frac{1}{2}(e^x + e^{-x})$ to show that $\cosh 2x = 2\cosh^2 x 1$.
 - (b) (i) The arc of the curve $y = \cosh x$ between x = 0 and $x = \ln a$ is rotated through 2π radians about the x-axis. Show that S, the surface area generated, is given by

$$S = 2\pi \int_0^{\ln a} \cosh^2 x \, dx \tag{3 marks}$$

(ii) Hence show that

$$S = \pi \left(\ln a + \frac{a^4 - 1}{4a^2} \right) \tag{5 marks}$$

6 By using the substitution u = x - 2, or otherwise, find the exact value of

$$\int_{-1}^{5} \frac{\mathrm{d}x}{\sqrt{32 + 4x - x^2}}$$
 (5 marks)

- 7 (a) Explain why n(n+1) is a multiple of 2 when n is an integer. (1 mark)
 - (b) (i) Given that

$$f(n) = n(n^2 + 5)$$

show that f(k+1) - f(k), where k is a positive integer, is a multiple of 6.

(4 marks)

(ii) Prove by induction that f(n) is a multiple of 6 for all integers $n \ge 1$. (4 marks)

8 (a) (i) Expand

$$\left(z + \frac{1}{z}\right)\left(z - \frac{1}{z}\right) \tag{1 mark}$$

(ii) Hence, or otherwise, expand

$$\left(z + \frac{1}{z}\right)^4 \left(z - \frac{1}{z}\right)^2 \tag{3 marks}$$

(b) (i) Use De Moivre's theorem to show that if $z = \cos \theta + i \sin \theta$ then

$$z^n + \frac{1}{z^n} = 2\cos n\theta \tag{3 marks}$$

- (ii) Write down a corresponding result for $z^n \frac{1}{z^n}$. (1 mark)
- (c) Hence express $\cos^4 \theta \sin^2 \theta$ in the form

$$A\cos 6\theta + B\cos 4\theta + C\cos 2\theta + D$$

where A, B, C and D are rational numbers.

(4 marks)

(d) Find
$$\int \cos^4 \theta \sin^2 \theta \ d\theta$$
. (2 marks)

END OF QUESTIONS

General Certificate of Education January 2009 Advanced Level Examination

MATHEMATICS Unit Further Pure 2

MFP2

Monday 19 January 2009 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P10402/Jan09/MFP2 6/6/6/ MFP2

Answer all questions.

1 (a) Use the definitions $\sinh\theta = \frac{1}{2}(e^{\theta} - e^{-\theta})$ and $\cosh\theta = \frac{1}{2}(e^{\theta} + e^{-\theta})$ to show that

$$1 + 2\sinh^2\theta = \cosh 2\theta \tag{3 marks}$$

(b) Solve the equation

$$3\cosh 2\theta = 2\sinh \theta + 11$$

giving each of your answers in the form $\ln p$.

(6 marks)

- 2 (a) Indicate on an Argand diagram the region for which $|z 4i| \le 2$. (4 marks)
 - (b) The complex number z satisfies $|z 4i| \le 2$. Find the range of possible values of arg z. (4 marks)
- 3 (a) Given that $f(r) = \frac{1}{4}r^2(r+1)^2$, show that

$$f(r) - f(r-1) = r^3$$
 (3 marks)

(b) Use the method of differences to show that

$$\sum_{r=n}^{2n} r^3 = \frac{3}{4}n^2(n+1)(5n+1)$$
 (5 marks)

4 It is given that α , β and γ satisfy the equations

$$\alpha + \beta + \gamma = 1$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -5$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -23$$

(a) Show that $\alpha\beta + \beta\gamma + \gamma\alpha = 3$.

(3 marks)

(b) Use the identity

$$(\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) = \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$$

to find the value of $\alpha\beta\gamma$.

- (2 marks)
- (c) Write down a cubic equation, with integer coefficients, whose roots are α , β and γ .

 (2 marks)
- (d) Explain why this cubic equation has two non-real roots. (2 marks)
- (e) Given that α is real, find the values of α , β and γ . (4 marks)
- 5 (a) Given that $u = \cosh^2 x$, show that $\frac{du}{dx} = \sinh 2x$. (2 marks)
 - (b) Hence show that

$$\int_0^1 \frac{\sinh 2x}{1 + \cosh^4 x} \, dx = \tan^{-1}(\cosh^2 1) - \frac{\pi}{4}$$
 (5 marks)

6 Prove by induction that

$$\frac{2 \times 1}{2 \times 3} + \frac{2^2 \times 2}{3 \times 4} + \frac{2^3 \times 3}{4 \times 5} + \dots + \frac{2^n \times n}{(n+1)(n+2)} = \frac{2^{n+1}}{n+2} - 1$$

for all integers $n \ge 1$.

(7 marks)

Turn over for the next question

7 (a) Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\cosh^{-1}\frac{1}{x}\right) = \frac{-1}{x\sqrt{1-x^2}}$$
(3 marks)

(b) A curve has equation

$$y = \sqrt{1 - x^2} - \cosh^{-1}\frac{1}{x}$$
 $(0 < x < 1)$

Show that:

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{1 - x^2}}{x};$$
 (4 marks)

- (ii) the length of the arc of the curve from the point where $x = \frac{1}{4}$ to the point where $x = \frac{3}{4}$ is $\ln 3$.
- **8** (a) Show that

$$(z^4 - e^{i\theta})(z^4 - e^{-i\theta}) = z^8 - 2z^4 \cos \theta + 1$$
 (2 marks)

(b) Hence solve the equation

$$z^8 - z^4 + 1 = 0$$

giving your answers in the form $e^{i\phi}$, where $-\pi < \phi \le \pi$. (6 marks)

(c) Indicate the roots on an Argand diagram. (3 marks)

END OF QUESTIONS

General Certificate of Education June 2009 Advanced Level Examination

MATHEMATICS Unit Further Pure 2

MFP2

Friday 5 June 2009 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P15485/Jun09/MFP2 6/6/6/ MFP2

Answer all questions.

1 Given that $z = 2e^{\frac{\pi i}{12}}$ satisfies the equation

$$z^4 = a(1 + \sqrt{3}i)$$

where a is real:

- (a) find the value of a; (3 marks)
- (b) find the other three roots of this equation, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (5 marks)
- 2 (a) Given that

$$\frac{1}{4r^2 - 1} = \frac{A}{2r - 1} + \frac{B}{2r + 1}$$

find the values of A and B.

(2 marks)

(b) Use the method of differences to show that

$$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{n}{2n+1}$$
 (3 marks)

- (c) Find the least value of n for which $\sum_{r=1}^{n} \frac{1}{4r^2 1}$ differs from 0.5 by less than 0.001.
- 3 The cubic equation

$$z^3 + pz^2 + 25z + q = 0$$

where p and q are real, has a root $\alpha = 2 - 3i$.

(a) Write down another non-real root, β , of this equation. (1 mark)

(b) Find:

(i) the value of $\alpha\beta$; (1 mark)

(ii) the third root, γ , of the equation; (3 marks)

(iii) the values of p and q. (3 marks)

4 (a) Sketch the graph of $y = \tanh x$.

(2 marks)

(b) Given that $u = \tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} to show that

$$x = \frac{1}{2} \ln \left(\frac{1+u}{1-u} \right) \tag{6 marks}$$

(c) (i) Show that the equation

$$3 \operatorname{sech}^2 x + 7 \tanh x = 5$$

can be written as

$$3\tanh^2 x - 7\tanh x + 2 = 0 \tag{2 marks}$$

(ii) Show that the equation

$$3\tanh^2 x - 7\tanh x + 2 = 0$$

has only one solution for x.

Find this solution in the form $\frac{1}{2} \ln a$, where a is an integer. (5 marks)

5 (a) Prove by induction that, if n is a positive integer,

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \qquad (5 \text{ marks})$$

(b) Hence, given that

$$z = \cos \theta + i \sin \theta$$

show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta \tag{3 marks}$$

(c) Given further that $z + \frac{1}{z} = \sqrt{2}$, find the value of

$$z^{10} + \frac{1}{z^{10}} \tag{4 marks}$$

Turn over for the next question

6 (a) Two points, A and B, on an Argand diagram are represented by the complex numbers 2+3i and -4-5i respectively. Given that the points A and B are at the ends of a diameter of a circle C_1 , express the equation of C_1 in the form $|z-z_0|=k$.

(4 marks)

- (b) A second circle, C_2 , is represented on the Argand diagram by the equation $|z-5+4\mathrm{i}|=4$. Sketch on one Argand diagram both C_1 and C_2 . (3 marks)
- (c) The points representing the complex numbers z_1 and z_2 lie on C_1 and C_2 respectively and are such that $|z_1 z_2|$ has its maximum value. Find this maximum value, giving your answer in the form $a + b\sqrt{5}$.
- 7 The diagram shows a curve which starts from the point A with coordinates (0, 2). The curve is such that, at every point P on the curve,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}s$$

where s is the length of the arc AP.

(a) (i) Show that

$$\frac{\mathrm{d}s}{\mathrm{d}x} = \frac{1}{2}\sqrt{4+s^2} \tag{3 marks}$$

(ii) Hence show that

$$s = 2\sinh\frac{x}{2} \tag{4 marks}$$

- (iii) Hence find the cartesian equation of the curve. (3 marks)
- (b) Show that

$$v^2 = 4 + s^2 \tag{2 marks}$$

END OF QUESTIONS

General Certificate of Education Advanced Level Examination January 2010

Mathematics

MFP2

Unit Further Pure 2

Friday 15 January 2010 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The **Examining Body** for this paper is AQA. The **Paper Reference** is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P21940/Jan10/MFP2 6/6/6/ MFP2

Answer all questions.

1 (a) Use the definitions $\cosh x = \frac{1}{2}(e^x + e^{-x})$ and $\sinh x = \frac{1}{2}(e^x - e^{-x})$ to show that

$$\cosh^2 x - \sinh^2 x = 1 (3 marks)$$

(b) (i) Express

$$5\cosh^2 x + 3\sinh^2 x$$

in terms of $\cosh x$. (1 mark)

- (ii) Sketch the curve $y = \cosh x$. (1 mark)
- (iii) Hence solve the equation

$$5\cosh^2 x + 3\sinh^2 x = 9.5$$

giving your answers in logarithmic form. (4 marks)

2 (a) On the same Argand diagram, draw:

- (i) the locus of points satisfying |z-4+2i|=4; (3 marks)
- (ii) the locus of points satisfying |z| = |z 2i|. (3 marks)
- (b) Indicate on your sketch the set of points satisfying both

$$|z-4+2i| \leq 4$$

and $|z| \geqslant |z - 2i|$ (2 marks)

3 The cubic equation

$$2z^3 + pz^2 + qz + 16 = 0$$

where p and q are real, has roots α , β and γ .

It is given that $\alpha = 2 + 2\sqrt{3}i$.

- (a) (i) Write down another root, β , of the equation. (1 mark)
 - (ii) Find the third root, γ . (3 marks)
 - (iii) Find the values of p and q. (3 marks)
- (b) (i) Express α in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (2 marks)
 - (ii) Show that

$$(2+2\sqrt{3}\,\mathrm{i})^n = 4^n \left(\cos\frac{n\pi}{3} + \mathrm{i}\sin\frac{n\pi}{3}\right) \tag{2 marks}$$

(iii) Show that

$$\alpha^n + \beta^n + \gamma^n = 2^{2n+1} \cos \frac{n\pi}{3} + \left(-\frac{1}{2}\right)^n$$

where n is an integer. (3 marks)

4 A curve *C* is given parametrically by the equations

$$x = \frac{1}{2}\cosh 2t, \qquad y = 2\sinh t$$

(a) Express

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$$

in terms of $\cosh t$. (6 marks)

- (b) The arc of C from t = 0 to t = 1 is rotated through 2π radians about the x-axis.
 - (i) Show that S, the area of the curved surface generated, is given by

$$S = 8\pi \int_0^1 \sinh t \cosh^2 t \, dt \qquad (2 \text{ marks})$$

(ii) Find the exact value of S. (2 marks)

5 The sum to r terms, S_r , of a series is given by

$$S_r = r^2(r+1)(r+2)$$

Given that u_r is the rth term of the series whose sum is S_r , show that:

(a) (i) $u_1 = 6$; (1 mark)

(ii)
$$u_2 = 42$$
; (1 mark)

(iii)
$$u_n = n(n+1)(4n-1)$$
. (3 marks)

(b) Show that

$$\sum_{r=n+1}^{2n} u_r = 3n^2(n+1)(5n+2)$$
 (3 marks)

6 (a) Show that the substitution $t = \tan \theta$ transforms the integral

$$\int \frac{\mathrm{d}\theta}{9\cos^2\theta + \sin^2\theta}$$

into

$$\int \frac{\mathrm{d}t}{9+t^2} \tag{3 marks}$$

(b) Hence show that

$$\int_{0}^{\frac{\pi}{3}} \frac{\mathrm{d}\theta}{9\cos^2\theta + \sin^2\theta} = \frac{\pi}{18}$$
 (3 marks)

7 The sequence u_1 , u_2 , u_3 ,... is defined by

$$u_1 = 2$$
, $u_{k+1} = 2u_k + 1$

(a) Prove by induction that, for all $n \ge 1$,

$$u_n = 3 \times 2^{n-1} - 1 \tag{5 marks}$$

(b) Show that

$$\sum_{r=1}^{n} u_r = u_{n+1} - (n+2)$$
 (3 marks)

8 (a) (i) Show that
$$\omega = e^{\frac{2\pi i}{7}}$$
 is a root of the equation $z^7 = 1$. (1 mark)

- (ii) Write down the five other non-real roots in terms of ω . (2 marks)
- (b) Show that

$$1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0$$
 (2 marks)

(c) Show that:

(i)
$$\omega^2 + \omega^5 = 2\cos\frac{4\pi}{7}$$
; (3 marks)

(ii)
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$$
. (4 marks)

END OF QUESTIONS

Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

A	1	C	Ą	1
1	7/	<u>-K</u>		

General Certificate of Education Advanced Level Examination June 2010

Mathematics

MFP2

Unit Further Pure 2

Wednesday 9 June 2010 1.30 pm to 3.00 pm

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

	Answer all questions in the spaces provided.
1 (a) Show that
	$9\sinh x - \cosh x = 4e^x - 5e^{-x} $ (2 marks)
(b) Given that
	$9\sinh x - \cosh x = 8$
	find the exact value of $tanh x$. (7 marks)
QUESTION PART REFERENCE	
•	
••••••	
•••••	
•••••	
•••••	
•••••	

2 (a)	Express $\frac{1}{r(r+2)}$ in partial fractions.	(3 marks)
-------	--	-----------

(b) Use the method of differences to find

$$\sum_{r=1}^{48} \frac{1}{r(r+2)}$$

giving your answer as a rational number.

(5 marks)

QUESTION PART REFERENCE	
••••••	
••••••	
•••••	

Two loci, L_1 and L_2 , in an Argand diagram are given by

$$L_1: |z+1+3i| = |z-5-7i|$$

$$L_2: \arg z = \frac{\pi}{4}$$

- Verify that the point represented by the complex number 2 + 2i is a point of intersection of L_1 and L_2 . (2 marks)
- (b) Sketch L_1 and L_2 on one Argand diagram. (5 marks)
- (c) Shade on your Argand diagram the region satisfying

both
$$|z+1+3i| \le |z-5-7i|$$

and $\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{2}$ (2 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	

4 The roots of the cubic equation

$$z^3 - 2z^2 + pz + 10 = 0$$

are α , β and γ .

It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$.

(a) Write down the value of $\alpha + \beta + \gamma$.

(1 mark)

(b) (i) Explain why $\alpha^3 - 2\alpha^2 + p\alpha + 10 = 0$.

(1 mark)

(ii) Hence show that

$$\alpha^2 + \beta^2 + \gamma^2 = p + 13 \tag{4 marks}$$

(iii) Deduce that p = -3.

(2 marks)

- (c) (i) Find the real root α of the cubic equation $z^3 2z^2 3z + 10 = 0$. (2 marks)
 - (ii) Find the values of β and γ .

(3 marks)

QUESTION PART REFERENCE	
PART	
REFERENCE	
	

5 (a) Using the identities

$$\cosh^2 t - \sinh^2 t = 1, \quad \tanh t = \frac{\sinh t}{\cosh t} \quad \text{and} \quad \operatorname{sech} t = \frac{1}{\cosh t}$$

show that:

(i)
$$\tanh^2 t + \operatorname{sech}^2 t = 1$$
; (2 marks)

(ii)
$$\frac{\mathrm{d}}{\mathrm{d}t}(\tanh t) = \mathrm{sech}^2 t$$
; (3 marks)

(iii)
$$\frac{d}{dt}(\operatorname{sech} t) = -\operatorname{sech} t \tanh t$$
. (3 marks)

(b) A curve C is given parametrically by

$$x = \operatorname{sech} t$$
, $y = 4 - \tanh t$

(i) Show that the arc length, s, of C between the points where t = 0 and $t = \frac{1}{2} \ln 3$ is given by

$$s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t \, \mathrm{d}t \tag{4 marks}$$

(ii) Using the substitution $u = e^t$, find the exact value of s. (6 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
•••••	

6 (a)	Charry that	1	k+1	2	(2 m aula)
o (a)	Show that	(k+2)!	$\frac{1}{(k+3)!}$	$=\frac{1}{(k+3)!}$.	(2 marks)

(b) Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!} = 1 - \frac{2^{n+1}}{(n+2)!}$$
 (6 marks)

QUESTION PART REFERENCE	

- **7 (a) (i)** Express each of the numbers $1 + \sqrt{3}i$ and 1 i in the form $re^{i\theta}$, where r > 0.
 - (ii) Hence express

$$(1+\sqrt{3}i)^8(1-i)^5$$

in the form $re^{i\theta}$, where r > 0.

(3 marks)

(b) Solve the equation

$$z^3 = (1 + \sqrt{3}i)^8 (1 - i)^5$$

giving your answers in the form $a\sqrt{2}\,\mathrm{e}^{\mathrm{i}\theta}$, where a is a positive integer and $-\pi < \theta \leqslant \pi$.

QUESTION PART REFERENCE	

General Certificate of Education Advanced Level Examination January 2011

Mathematics

MFP2

Unit Further Pure 2

Wednesday 19 January 2011 1.30 pm to 3.00 pm

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

$$|z - 4 + 3i| = 5$$
 (3 marks)

(b) (i) Indicate on your diagram the point P representing z_1 , where both

$$|z_1 - 4 + 3i| = 5$$
 and $\arg z_1 = 0$ (1 mark)

(ii) Find the value of $|z_1|$. (1 mark)

2 (a) Given that

$$u_r = \frac{1}{6}r(r+1)(4r+11)$$

show that

$$u_r - u_{r-1} = r(2r+3)$$
 (3 marks)

(b) Hence find the sum of the first hundred terms of the series

$$1 \times 5 + 2 \times 7 + 3 \times 9 + \dots + r(2r+3) + \dots$$
 (3 marks)

3 (a) Show that
$$(1+i)^3 = 2i - 2$$
. (2 marks)

(b) The cubic equation

$$z^{3} - (5+i)z^{2} + (9+4i)z + k(1+i) = 0$$

where k is a real constant, has roots α , β and γ .

It is given that $\alpha = 1 + i$.

(i) Find the value of k. (3 marks)

(ii) Show that $\beta + \gamma = 4$. (1 mark)

(iii) Find the values of β and γ . (5 marks)

4 (a) Prove that the curve

$$y = 12 \cosh x - 8 \sinh x - x$$

has exactly one stationary point.

(7 marks)

- (b) Given that the coordinates of this stationary point are (a, b), show that a + b = 9.

 (4 marks)
- 5 (a) Given that $u = \sqrt{1 x^2}$, find $\frac{du}{dx}$. (2 marks)
 - **(b)** Use integration by parts to show that

$$\int_{0}^{\frac{\sqrt{3}}{2}} \sin^{-1} x \, dx = a\sqrt{3} \, \pi + b$$

where a and b are rational numbers.

(6 marks)

6 (a) Given that

$$x = \ln(\sec t + \tan t) - \sin t$$

show that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin t \tan t \tag{4 marks}$$

(b) A curve is given parametrically by the equations

$$x = \ln(\sec t + \tan t) - \sin t$$
, $y = \cos t$

The length of the arc of the curve between the points where t = 0 and $t = \frac{\pi}{3}$ is denoted by s.

Show that $s = \ln p$, where p is an integer.

(6 marks)

7 (a) Given that

$$f(k) = 12^k + 2 \times 5^{k-1}$$

show that

$$f(k+1) - 5f(k) = a \times 12^k$$

where a is an integer.

(3 marks)

- (b) Prove by induction that $12^n + 2 \times 5^{n-1}$ is divisible by 7 for all integers $n \ge 1$.
- **8 (a)** Express in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$:
 - (i) $4(1+i\sqrt{3})$;

(ii)
$$4(1-i\sqrt{3})$$
. (3 marks)

(b) The complex number z satisfies the equation

$$(z^3 - 4)^2 = -48$$

Show that $z^3 = 4 \pm 4\sqrt{3}i$.

(2 marks)

(c) (i) Solve the equation

$$(z^3 - 4)^2 = -48$$

giving your answers in the form $re^{i\theta}$, where r>0 and $-\pi<\theta\leqslant\pi$. (5 marks)

- (ii) Illustrate the roots on an Argand diagram. (3 marks)
- (d) (i) Explain why the sum of the roots of the equation

$$(z^3 - 4)^2 = -48$$

is zero. (1 mark)

(ii) Deduce that
$$\cos \frac{\pi}{9} + \cos \frac{3\pi}{9} + \cos \frac{5\pi}{9} + \cos \frac{7\pi}{9} = \frac{1}{2}$$
. (3 marks)

General Certificate of Education Advanced Level Examination June 2011

Mathematics

MFP2

Unit Further Pure 2

Monday 13 June 2011 9.00 am to 10.30 am

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

- **1 (a)** Draw on the same Argand diagram:
 - (i) the locus of points for which

$$|z-2-5i|=5 (3 marks)$$

(ii) the locus of points for which

$$\arg(z+2i) = \frac{\pi}{4}$$
 (3 marks)

(b) Indicate on your diagram the set of points satisfying both

$$|z-2-5i| \leq 5$$

and

$$\arg(z+2i) = \frac{\pi}{4}$$

(2 marks)

2 (a) Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} to show that

$$\cosh x \cosh y - \sinh x \sinh y = \cosh(x - y) \tag{4 marks}$$

(b) It is given that x satisfies the equation

$$\cosh(x - \ln 2) = \sinh x$$

(i) Show that $\tanh x = \frac{5}{7}$.

(4 marks)

(ii) Express x in the form $\frac{1}{2} \ln a$.

(2 marks)

3 (a) Show that

$$(r+1)! - (r-1)! = (r^2 + r - 1)(r-1)!$$
 (2 marks)

(b) Hence show that

$$\sum_{r=1}^{n} (r^2 + r - 1)(r - 1)! = (n + 2)n! - 2$$
 (4 marks)

4 The cubic equation

$$z^3 - 2z^2 + k = 0 \qquad (k \neq 0)$$

has roots α , β and γ .

(a) (i) Write down the values of
$$\alpha + \beta + \gamma$$
 and $\alpha\beta + \beta\gamma + \gamma\alpha$. (2 marks)

(ii) Show that
$$\alpha^2 + \beta^2 + \gamma^2 = 4$$
. (2 marks)

(iii) Explain why
$$\alpha^3 - 2\alpha^2 + k = 0$$
. (1 mark)

(iv) Show that
$$\alpha^3 + \beta^3 + \gamma^3 = 8 - 3k$$
. (2 marks)

(b) Given that $\alpha^4 + \beta^4 + \gamma^4 = 0$:

(i) show that
$$k = 2$$
; (4 marks)

(ii) find the value of
$$\alpha^5 + \beta^5 + \gamma^5$$
. (3 marks)

The arc of the curve $y^2 = x^2 + 8$ between the points where x = 0 and x = 6 is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$S = 2\sqrt{2\pi} \int_0^6 \sqrt{x^2 + 4} \, \mathrm{d}x \tag{5 marks}$$

(b) By means of the substitution $x = 2 \sinh \theta$, show that

$$S = \pi (24\sqrt{5} + 4\sqrt{2}\sinh^{-1}3)$$
 (8 marks)

6 (a) Show that

$$(k+1)(4(k+1)^2-1) = 4k^3 + 12k^2 + 11k + 3$$
 (2 marks)

(b) Prove by induction that, for all integers $n \ge 1$,

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n - 1)^{2} = \frac{1}{3}n(4n^{2} - 1)$$
 (6 marks)

7 (a) (i) Use de Moivre's Theorem to show that

$$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$$

and find a similar expression for $\sin 5\theta$.

(5 marks)

(ii) Deduce that

$$\tan 5\theta = \frac{\tan \theta (5 - 10\tan^2 \theta + \tan^4 \theta)}{1 - 10\tan^2 \theta + 5\tan^4 \theta}$$
 (3 marks)

(b) Explain why $t = \tan \frac{\pi}{5}$ is a root of the equation

$$t^4 - 10t^2 + 5 = 0$$

and write down the three other roots of this equation in trigonometrical form.

(3 marks)

(c) Deduce that

$$\tan\frac{\pi}{5}\tan\frac{2\pi}{5} = \sqrt{5}$$
 (5 marks)

END OF QUESTIONS

Copyright © 2011 AQA and its licensors. All rights reserved.

General Certificate of Education Advanced Level Examination January 2012

Mathematics

MFP2

Unit Further Pure 2

Friday 20 January 2012 1.30 pm to 3.00 pm

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Show, by means of a sketch, that the curves with equations

$$y = \sinh x$$

and

$$y = \operatorname{sech} x$$

have exactly one point of intersection.

(4 marks)

- (b) Find the x-coordinate of this point of intersection, giving your answer in the form $a \ln b$. (4 marks)
- **2 (a)** Draw on an Argand diagram the locus L of points satisfying the equation $\arg z = \frac{\pi}{6}$.
 - (b) (i) A circle C, of radius 6, has its centre lying on L and touches the line Re(z) = 0. Draw C on your Argand diagram from part (a). (2 marks)
 - (ii) Find the equation of C, giving your answer in the form $|z z_0| = k$. (3 marks)
 - (iii) The complex number z_1 lies on C and is such that $\arg z_1$ has its least possible value. Find $\arg z_1$, giving your answer in the form $p\pi$, where -1 . (2 marks)

3 A curve has cartesian equation

$$y = \frac{1}{2} \ln(\tanh x)$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sinh 2x} \tag{4 marks}$$

(b) The points A and B on the curve have x-coordinates $\ln 2$ and $\ln 4$ respectively. Find the arc length AB, giving your answer in the form $p \ln q$, where p and q are rational numbers. (8 marks)

The sequence u_1 , u_2 , u_3 , ... is defined by

$$u_1 = \frac{3}{4} \qquad u_{n+1} = \frac{3}{4 - u_n}$$

Prove by induction that, for all $n \ge 1$,

$$u_n = \frac{3^{n+1} - 3}{3^{n+1} - 1} \tag{6 marks}$$

5 Find the smallest positive integer values of p and q for which

$$\frac{\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)^{p}}{\left(\cos\frac{\pi}{12} - i\sin\frac{\pi}{12}\right)^{q}} = i$$
 (7 marks)

- **6 (a)** Express $7 + 4x 2x^2$ in the form $a b(x c)^2$, where a, b and c are integers. (2 marks)
 - (b) By means of a suitable substitution, or otherwise, find the exact value of

$$\int_{1}^{\frac{5}{2}} \frac{dx}{\sqrt{7 + 4x - 2x^2}}$$
 (6 marks)

7 The numbers α , β and γ satisfy the equations

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -10 - 12i$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 5 + 6i$$

- (a) Show that $\alpha + \beta + \gamma = 0$. (2 marks)
- **(b)** The numbers α , β and γ are also the roots of the equation

$$z^3 + pz^2 + qz + r = 0$$

Write down the value of p and the value of q.

(2 marks)

- (c) It is also given that $\alpha = 3i$.
 - (i) Find the value of r. (3 marks)
 - (ii) Show that β and γ are the roots of the equation

$$z^2 + 3iz - 4 + 6i = 0 (2 marks)$$

(iii) Given that β is real, find the values of β and γ .

- (3 marks)
- 8 (a) Write down the five roots of the equation $z^5=1$, giving your answers in the form $e^{i\theta}$, where $-\pi < \theta \leqslant \pi$.
 - **(b)** Hence find the four linear factors of

$$z^4 + z^3 + z^2 + z + 1$$
 (3 marks)

(c) Deduce that

$$z^{2} + z + 1 + z^{-1} + z^{-2} = \left(z - 2\cos\frac{2\pi}{5} + z^{-1}\right)\left(z - 2\cos\frac{4\pi}{5} + z^{-1}\right)$$
 (4 marks)

(d) Use the substitution
$$z + z^{-1} = w$$
 to show that $\cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$. (6 marks)

General Certificate of Education Advanced Level Examination June 2012

Mathematics

MFP2

Unit Further Pure 2

Thursday 31 May 2012 9.00 am to 10.30 am

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

PhysicsAndMathsTutor.com

2

- 1 (a) Sketch the curve $y = \cosh x$. (1 mark)
 - **(b)** Solve the equation

$$6\cosh^2 x - 7\cosh x - 5 = 0$$

giving your answers in logarithmic form. (6 marks)

- **2 (a)** Draw on the Argand diagram below:
 - (i) the locus of points for which

$$|z-2-3i|=2 (3 marks)$$

(ii) the locus of points for which

$$|z+2-i| = |z-2|$$
 (3 marks)

(b) Indicate on your diagram the points satisfying both

$$|z - 2 - 3i| = 2$$

and

$$|z+2-i| \leqslant |z-2|$$

(1 mark)

3 (a) Show that

$$\frac{2^{r+1}}{r+2} - \frac{2^r}{r+1} = \frac{r2^r}{(r+1)(r+2)}$$
 (3 marks)

(b) Hence find

$$\sum_{r=1}^{30} \frac{r2^r}{(r+1)(r+2)}$$

giving your answer in the form $2^n - 1$, where n is an integer.

4 The cubic equation

$$z^3 + pz + q = 0$$

has roots α , β and γ .

(a) (i) Write down the value of
$$\alpha + \beta + \gamma$$
. (1 mark)

- (ii) Express $\alpha\beta\gamma$ in terms of q. (1 mark)
- **(b)** Show that

$$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma \tag{3 marks}$$

(c) Given that $\alpha = 4 + 7i$ and that p and q are real, find the values of:

(i)
$$\beta$$
 and γ ; (2 marks)

(ii)
$$p$$
 and q . (3 marks)

- (d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.
- The function f, where $f(x) = \sec x$, has domain $0 \le x < \frac{\pi}{2}$ and has inverse function f^{-1} , where $f^{-1}(x) = \sec^{-1} x$.
 - (a) Show that

$$\sec^{-1} x = \cos^{-1} \frac{1}{x} \tag{2 marks}$$

(b) Hence show that

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sec^{-1}x) = \frac{1}{\sqrt{x^4 - x^2}}$$
 (4 marks)

(3 marks)

6 (a) Show that

$$\frac{1}{4}(\cosh 4x + 2\cosh 2x + 1) = \cosh^2 x \cosh 2x \qquad (3 \text{ marks})$$

(b) Show that, if $y = \cosh^2 x$, then

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cosh^2 2x \tag{3 marks}$$

The arc of the curve $y = \cosh^2 x$ between the points where x = 0 and $x = \ln 2$ is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$S = \frac{\pi}{256} (a \ln 2 + b)$$

where a and b are integers.

(7 marks)

7 (a) Prove by induction that, for all integers $n \ge 1$,

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{2n+1}{n^2(n+1)^2} = 1 - \frac{1}{(n+1)^2}$$
 (7 marks)

(b) Find the smallest integer n for which the sum of the series differs from 1 by less than 10^{-5} . (2 marks)

8 (a) Use De Moivre's Theorem to show that, if $z = \cos \theta + i \sin \theta$, then

$$z^n + \frac{1}{z^n} = 2\cos n\theta \tag{3 marks}$$

(b) (i) Expand
$$\left(z^2 + \frac{1}{z^2}\right)^4$$
. (1 mark)

(ii) Show that

$$\cos^4 2\theta = A\cos 8\theta + B\cos 4\theta + C$$

where A, B and C are rational numbers.

(4 marks)

(c) Hence solve the equation

$$8\cos^4 2\theta = \cos 8\theta + 5$$

for $0 \le \theta \le \pi$, giving each solution in the form $k\pi$.

(3 marks)

(d) Show that

$$\int_0^{\frac{\pi}{2}} \cos^4 2\theta \, \mathrm{d}\theta = \frac{3\pi}{16} \tag{3 marks}$$

General Certificate of Education Advanced Level Examination January 2013

Mathematics

MFP2

Unit Further Pure 2

Wednesday 23 January 2013 9.00 am to 10.30 am

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Show that

$$12\cosh x - 4\sinh x = 4e^x + 8e^{-x}$$
 (2 marks)

(b) Solve the equation

$$12\cosh x - 4\sinh x = 33$$

giving your answers in the form $k \ln 2$.

(5 marks)

Two loci, L_1 and L_2 , in an Argand diagram are given by

$$L_1: |z + 6 - 5i| = 4\sqrt{2}$$

$$L_2: \quad \arg(z+i) = \frac{3\pi}{4}$$

The point P represents the complex number -2 + i.

- (a) Verify that the point P is a point of intersection of L_1 and L_2 . (2 marks)
- **(b)** Sketch L_1 and L_2 on one Argand diagram. (6 marks)
- (c) The point Q is also a point of intersection of L_1 and L_2 . Find the complex number that is represented by Q. (2 marks)
- 3 (a) Show that $\frac{1}{5r-2} \frac{1}{5r+3} = \frac{A}{(5r-2)(5r+3)}$, stating the value of the constant A. (2 marks)
 - **(b)** Hence use the method of differences to show that

$$\sum_{r=1}^{n} \frac{1}{(5r-2)(5r+3)} = \frac{n}{3(5n+3)}$$
 (4 marks)

(c) Find the value of

$$\sum_{r=1}^{\infty} \frac{1}{(5r-2)(5r+3)}$$
 (1 mark)

4 The roots of the equation

$$z^3 - 5z^2 + kz - 4 = 0$$

are α , β and γ .

- (a) (i) Write down the value of $\alpha + \beta + \gamma$ and the value of $\alpha \beta \gamma$. (2 marks)
 - (ii) Hence find the value of $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$. (2 marks)
- **(b)** The value of $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ is -4.
 - (i) Explain why α , β and γ cannot all be real. (1 mark)
 - (ii) By considering $(\alpha\beta + \beta\gamma + \gamma\alpha)^2$, find the possible values of k. (4 marks)
- 5 (a) Using the definition $\tanh y = \frac{e^y e^{-y}}{e^y + e^{-y}}$, show that, for |x| < 1,

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \tag{3 marks}$$

- **(b)** Hence, or otherwise, show that $\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$. (3 marks)
- (c) Use integration by parts to show that

$$\int_{0}^{\frac{1}{2}} 4 \tanh^{-1} x \, \mathrm{d}x = \ln \left(\frac{3^{m}}{2^{n}} \right)$$

where m and n are positive integers.

(5 marks)

6 A curve is defined parametrically by

$$x = t^3 + 5$$
, $y = 6t^2 - 1$

The arc length between the points where t = 0 and t = 3 on the curve is s.

- (a) Show that $s = \int_0^3 3t \sqrt{t^2 + A} \, dt$, stating the value of the constant A. (4 marks)
- (b) Hence show that s = 61. (4 marks)

PhysicsAndMathsTutor.com

4

7 The polynomial p(n) is given by $p(n) = (n-1)^3 + n^3 + (n+1)^3$.

- (a) (i) Show that p(k+1) p(k), where k is a positive integer, is a multiple of 9.

 (3 marks)
 - (ii) Prove by induction that p(n) is a multiple of 9 for all integers $n \ge 1$. (4 marks)
- Using the result from part (a)(ii), show that $n(n^2 + 2)$ is a multiple of 3 for any positive integer n. (2 marks)
- **8 (a)** Express $-4 + 4\sqrt{3}i$ in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (3 marks)
 - **(b) (i)** Solve the equation $z^3 = -4 + 4\sqrt{3}i$, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (ii) The roots of the equation $z^3 = -4 + 4\sqrt{3}i$ are represented by the points P, Q and R on an Argand diagram.

Find the area of the triangle PQR, giving your answer in the form $k\sqrt{3}$, where k is an integer. (3 marks)

(c) By considering the roots of the equation $z^3 = -4 + 4\sqrt{3}i$, show that

$$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0 \tag{4 marks}$$

General Certificate of Education Advanced Level Examination June 2013

Mathematics

MFP2

Unit Further Pure 2

Thursday 6 June 2013 9.00 am to 10.30 am

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Sketch on an Argand diagram the locus of points satisfying the equation

$$|z - 6i| = 3 (3 marks)$$

- (b) It is given that z satisfies the equation |z 6i| = 3.
 - (i) Write down the greatest possible value of |z|. (1 mark)
 - (ii) Find the greatest possible value of $\arg z$, giving your answer in the form $p\pi$, where -1 .
- **2 (a) (i)** Sketch on the axes below the graphs of $y = \sinh x$ and $y = \cosh x$. (3 marks)
 - (ii) Use your graphs to explain why the equation

$$(k + \sinh x) \cosh x = 0$$

where k is a constant, has exactly one solution.

(1 mark)

(b) A curve C has equation $y = 6 \sinh x + \cosh^2 x$. Show that C has only one stationary point and show that its y-coordinate is an integer. (5 marks)

3 The sequence u_1 , u_2 , u_3 , ... is defined by

$$u_1 = 2$$
, $u_{n+1} = \frac{5u_n - 3}{3u_n - 1}$

Prove by induction that, for all integers $n \ge 1$,

$$u_n = \frac{3n+1}{3n-1} \tag{6 marks}$$

4 (a) Given that $f(r) = r^2(2r^2 - 1)$, show that

$$f(r) - f(r-1) = (2r-1)^3$$
 (3 marks)

(b) Use the method of differences to show that

$$\sum_{r=n+1}^{2n} (2r-1)^3 = 3n^2(10n^2 - 1)$$
 (4 marks)

5 The cubic equation

$$z^3 + pz^2 + qz + 37 - 36i = 0$$

where p and q are constants, has three complex roots, α , β and γ .

It is given that $\beta = -2 + 3i$ and $\gamma = 1 + 2i$.

- (a) (i) Write down the value of $\alpha\beta\gamma$. (1 mark)
 - (ii) Hence show that $(8 + i)\alpha = 37 36i$. (2 marks)
 - (iii) Hence find α , giving your answer in the form m + ni, where m and n are integers.

 (3 marks)
- (b) Find the value of p. (1 mark)
- (c) Find the value of the complex number q. (2 marks)
- 6 (a) Show that $\frac{1}{5\cosh x 3\sinh x} = \frac{e^x}{m + e^{2x}}$, where m is an integer. (3 marks)
 - **(b)** Use the substitution $u = e^x$ to show that

$$\int_0^{\ln 2} \frac{1}{5 \cosh x - 3 \sinh x} \, \mathrm{d}x = \frac{\pi}{8} - \frac{1}{2} \tan^{-1} \left(\frac{1}{2}\right) \tag{5 marks}$$

7 (a) (i) Show that

$$\frac{d}{du} \left(2u\sqrt{1 + 4u^2} + \sinh^{-1} 2u \right) = k\sqrt{1 + 4u^2}$$

where k is an integer.

(4 marks)

(ii) Hence show that

$$\int_0^1 \sqrt{1 + 4u^2} \, du = p\sqrt{5} + q \sinh^{-1} 2$$

where p and q are rational numbers.

(2 marks)

- (b) The arc of the curve with equation $y = \frac{1}{2}\cos 4x$ between the points where x = 0 and $x = \frac{\pi}{8}$ is rotated through 2π radians about the x-axis.
 - (i) Show that the area S of the curved surface formed is given by

$$S = \pi \int_0^{\frac{\pi}{8}} \cos 4x \sqrt{1 + 4\sin^2 4x} \, dx$$
 (2 marks)

- (ii) Use the substitution $u = \sin 4x$ to find the exact value of S. (4 marks)
- **8 (a) (i)** Use de Moivre's theorem to show that

$$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$$

and find a similar expression for $\sin 4\theta$.

(5 marks)

(ii) Deduce that

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$$
 (3 marks)

(b) Explain why $t = \tan \frac{\pi}{16}$ is a root of the equation

$$t^4 + 4t^3 - 6t^2 - 4t + 1 = 0$$

and write down the three other roots in trigonometric form.

(4 marks)

(c) Hence show that

$$\tan^2 \frac{\pi}{16} + \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} + \tan^2 \frac{7\pi}{16} = 28$$
 (5 marks)

Copyright © 2013 AQA and its licensors. All rights reserved.

